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€ Organized convection is often associated with diabatic heating profiles S éé ) " éé ) 2 Even before we parameterize organized convection, incorporation of the new convective ice parameterization into the GISS
that peak at higher altitudes (initially due to convectively-detrained 4 . 4 GCM leads to model improvement (e.g. a too-high IWC climatology in the CMIP5 GISS GCM is now substantially reduced,
ice content increasing by deposition in a moist environment). The 0 e 10 with closer agreement between GCM cloud profiles and satellite retrievals noted for a number of environmental states).
Houze (1989) schematic below notes a few important organized . - o - - Stratiform rainfall decreases (global: 1.72 to 1.53 mm day'), and convective rain slightly increases (on average) as IWP
convection processes (region where detrained ice occurs: boxed in red). ) s " decreases. The percent of stratiform rainfall drops from 45% to 35% over the 20N-20S domain (Schumacher and Houze
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SEIVe as ta.rgets for par_ameterlzatlon devel_opment. Towara para_met_er- y muted change in radiation fields. However the impacts on radiation require further analysis to be fully understood.
izing organized convection, we then describe our new convective ice Ny
parameterization (that can yield the detrained ice that feeds an anvil). 00
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